KERNEL ESTIMATION OF CUMULATIVE DISTRIBUTION FUNCTION OF A RANDOM VARIABLE WITH BOUNDED SUPPORT
نویسندگان
چکیده
منابع مشابه
Kernel estimation of multivariate cumulative distribution function
A smooth kernel estimator is proposed for multivariate cumulative distribution functions (cdf), extending the work of Yamato [H. Yamato, Uniform convergence of an estimator of a distribution function, Bull. Math. Statist. 15 (1973), pp. 69–78.] on univariate distribution function estimation. Under assumptions of strict stationarity and geometrically strong mixing, we establish that the proposed...
متن کاملEfficient Estimation of the Density and Cumulative Distribution Function of the Generalized Rayleigh Distribution
The uniformly minimum variance unbiased (UMVU), maximum likelihood, percentile (PC), least squares (LS) and weighted least squares (WLS) estimators of the probability density function (pdf) and cumulative distribution function are derived for the generalized Rayleigh distribution. This model can be used quite effectively in modelling strength data and also modeling general lifetime data. It has...
متن کاملEstimation of Scale Parameter Under a Bounded Loss Function
The quadratic loss function has been used by decision-theoretic statisticians and economists for many years. In this paper the estimation of scale parameter under a bounded loss function, which is adequate for assessing quality and quality improvement, is considered with restriction to the principles of invariance and risk unbiasedness. An implicit form of minimum risk scale equivariant ...
متن کاملEstimation of Lower Bounded Scale Parameter of Rescaled F-distribution under Entropy Loss Function
We consider the problem of estimating the scale parameter &beta of a rescaled F-distribution when &beta has a lower bounded constraint of the form &beta&gea, under the entropy loss function. An admissible minimax estimator of the scale parameter &beta, which is the pointwise limit of a sequence of Bayes estimators, is given. Also in the class of truncated linear estimators, the admissible estim...
متن کاملSupport vector regression with random output variable and probabilistic constraints
Support Vector Regression (SVR) solves regression problems based on the concept of Support Vector Machine (SVM). In this paper, a new model of SVR with probabilistic constraints is proposed that any of output data and bias are considered the random variables with uniform probability functions. Using the new proposed method, the optimal hyperplane regression can be obtained by solving a quadrati...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Statistics in Transition. New Series
سال: 2016
ISSN: 1234-7655,2450-0291
DOI: 10.21307/stattrans-2016-037